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Abstract

In this paper, we are interested in modeling complex ac-

tivities that occur in a typical household. We propose to use

programs, i.e., sequences of atomic actions and interactions,

as a high level representation of complex tasks. Programs

are interesting because they provide a non-ambiguous rep-

resentation of a task, and allow agents to execute them.

However, nowadays, there is no database providing this type

of information. Towards this goal, we first crowd-source

programs for a variety of activities that happen in people’s

homes, via a game-like interface used for teaching kids how

to code. Using the collected dataset, we show how we can

learn to extract programs directly from natural language

descriptions or from videos. We then implement the most

common atomic (inter)actions in the Unity3D game engine,

and use our programs to “drive” an artificial agent to ex-

ecute tasks in a simulated household environment. Our

VirtualHome simulator allows us to create a large activity

video dataset with rich ground-truth, enabling training and

testing of video understanding models. We further showcase

examples of our agent performing tasks in our VirtualHome

based on language descriptions.

1. Introduction

Autonomous agents need to know the sequences of ac-

tions that need to be performed in order to achieve certain

goals. For example, we might want a robot to clean our room,

make the bed, or cook dinner. One can define activities with

procedural recipes or programs that describe how one can

accomplish the task. A program contains a sequence of sim-

ple symbolic instructions, each referencing an atomic action

(e.g. “sit”) or interaction (e.g. “pick-up object”) and a num-

ber of objects that the action refers to (e.g., “pick-up juice”).

Assuming that an agent knows how to execute the atomic

actions, programs provide an effective means of “driving” a

robot to perform different, more complex tasks. Programs
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Robots 

Ac#on:					Work	on	computer	
Descrip#on:		Turn	on	your	computer	and	

sit	in	front	of	it.	Type	on	the	keyboard,	

grab	the	mouse	to	scroll.	

Ac#on:					Make	coffee	
Descrip#on:		Go	to	the	kitchen	and	

swith	on	the	coffee	machine.	Wait	un#l	

it’s	done	and	pour	the	coffee	into	a	cup.	

Ac#on:					Read	a	book	
Descrip#on:		Sit	down	in	recliner.	Pick	up	

a	novel	off	of	coffee	table.	Open	novel	to	

last	read	page.	Read.	
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Figure 1: We first crowdsource a large knowledge base of household

tasks, (top). Each task has a high level name, and a natural language in-

struction. We then collect “programs” for these tasks, (middle left), where

the annotators “translate” the instruction into simple code. We implement

the most frequent (inter)actions in a 3D simulator, called VirtualHouse,

allowing us to drive an agent to execute tasks defined by programs. We pro-

pose methods to generate programs automatically from text (top) and video

(bottom), thus driving an agent via language and a video demonstration.

can also be used as an internal representation of an activity

shown in a video or described by a human (or another agent).

Our goal in this paper is to automatically generate programs

from natural language descriptions, as well as from video

demonstrations, potentially allowing naive users to teach

their robot a wide variety of novel tasks.

Towards this goal, one important missing piece is the

lack of a database describing activities composed of multi-

ple steps. We first crowdsource common-sense information

about typical activities that happen in people’s homes, form-

ing the natural language know-how of how these activities

are performed. We then adapt the Scratch [1] interface used

for teaching kids how to code in order to collect programs

that formalize the activity as described in the knowledge

base. Note that these programs include all the steps required

for the robot to accomplish a task, even those that are not

mentioned in the language descriptions. We then implement

the most common atomic (inter)actions in the Unity3D game

engine, such as pick-up, switch on/off, sit, stand-up. By ex-

ploiting the physics, navigation and kinematic models in the



game engine we enable an artificial agent to execute these

programs in a simulated household environment.

We first introduce our data collection effort and the pro-

gram based representation of activities. In Sec. 5 we show

how we can learn to automatically translate natural language

instructions of activities into programs. In Sec. 4 we intro-

duce the VirtualHome simulator that allows us to create a

large activity video dataset with rich ground-truth by using

programs to drive an agent in a synthetic world. Finally,

we use the synthetic videos to train a system to translate

videos of activities into the program being executed by the

agent. Our VirtualHome opens an important “playground”

for both vision and robotics, allowing agents to exploit lan-

guage and visual demonstration to execute novel activities

in a simulated environment. Our data is available online:

http://virtual-home.org/.

2. Related Work

Actions as programs. A few works have defined activi-

ties as programs. In [30], the authors detect objects and ac-

tions in cooking videos and generate an “action plan” using

a probabilistic grammar. By generating the plan, the robots

were able to execute complex actions by simply watching

videos. These authors further collected a tree bank of action

plans from annotated cooking videos [29], creating a knowl-

edge base of actions as programs for cooking. [18] tried to

translate cooking recipes into action plans using an MRF.

[23, 3] also argued for actions as a sequence of atomic steps.

They aligned YouTube how-to videos with their narrations

in order to parse videos into such programs. Most of these

works were limited to either a small set of activities, or to

a narrow domain (cooking). We go beyond this by creating

a knowledge base about an exhaustive set of activities and

tasks that people do in their homes.

[25] crowd-sourced scripts of people’s actions at home

in the form of natural language. These were mostly com-

prised of one or two sentences describing a short sequence

of actions. While this is valuable information, language is

very versatile and thus hard to convert into a usable program

on a robot. We show how to do this in our work.

Code generation. There is increased interest in generat-

ing and interpreting source code [13]. Work most relevant

to ours produces code given natural language inputs. [4]

retrieves code snippets from Stackoverflow based on lan-

guage queries. Given a sentence describing conditions, [19]

produces If-This-Then-That code. [14] generates a program

specifying the logic of a card game given a short descrip-

tion of the rules. In [9], the authors inferred programs to

answer visual questions about images. Our work differs in

the domain, and works with text or video as input.

Robotics. A subfield of robotics aims at teaching robots

to follow instructions provided in natural language by a hu-

man tutor. However, most of the existing literature deals

with a constrained problem, for example, they learn to trans-

late navigational instructions into a sequence of robotic ac-

tions [27, 15, 12, 16]. These instructions are typically sim-

pler as they directly mention what to do next, and the action

space is small. This is not the case in our work which also

considers interactions with objects, and everyday activities

which are typically far more complex.

Simulation. Simulations using game engines have been

developed to facilitate training visual models for autonomous

driving [8, 21, 7], quadcopter flying [24], or other robotic

tasks [5]. Recent works have focused on simulating indoor

environments, allowing for target-driven indoor navigation

or interactive question answering [11, 28, 6, 22]. A few of

these works [11, 6] include actionable objects, allowing to

interact and change the environment. Our work focuses on

simulating a wide range of human actions, both in terms

of objects interactions and human poses, which allows to

simulate common activities. We are not aware of simulators

at the scale of objects and actions in a home, like ours. Lastly,

we give credit to the popular game Sims which we draw our

inspiration from. Sims is a strategic video game mimicking

daily household activities. Unfortunately, the source of the

game is not public and thus cannot be used for our purpose.

3. KB of Household Activities for Robots

Our goal is to build a large repository of common activi-

ties and tasks that we perform in our households in our daily

lives. These tasks can include simple actions like “turning on

TV" or complex ones such as “make coffee with milk". What

makes our effort unique is that we are interested in collect-

ing this information for robots. Unlike humans, robots need

more direct instructions. For example, in order to “watch

tv”, one might describe it (to a human) as “Switch on the

television, and watch it from the sofa”. Here, the actions

“grab remote control” and “sit/lie on sofa” have been omit-

ted, since they are part of the commonsense knowledge that

humans have. In our work, we aim to collect all the steps

required for a robot to successfully execute a task, including

the commonsense steps. In particular, we want to collect

programs that fully describe activities.

Describing actions as programs has the advantage that it

provides a clear and non-ambiguous description of all the

steps needed to complete a task. Such programs can then

be used to instruct a robot or a virtual character. Programs

can also be used as a representation of a complex task that

involves a number of simpler actions, providing a way to

understand and compare activities and goals.

3.1. Data Collection

In this section, we describe our dataset collection using

crowdsourcing. Describing actions as programs can be a

challenging task as most annotators have no programing

experience. We split the data collection effort in two parts.

http://virtual-home.org/


RGB pose class seg. inst. seg depth flow

Figure 2: VirtualHome Activity Dataset is a video dataset of composite activities created with our simulator. We start by generating

programs using a simple probabilistic grammar. We animate each program in VirtualHome by randomizing the selection of homes, agents,

cameras, as well as the placement of a subset of the objects, the initial location of the agent, the speed of the actions, and choice of objects

for interactions. Each program is shown to an annotator who is asked to describe it in natural language (top row). Videos have ground-truth:

(second row) time-stamp for each atomic action, (bottom) 2D and 3D pose, class and object instance segmentation, depth and optical flow.

In the first part, we ask AMT workers to provide verbal

descriptions of daily household activities. In particular, each

worker is asked to come up with a common activity/task,

give it a high level name, eg “make coffee”, and describe it

in detail. In order to cover a wide spectrum of activities we

pre-specified in which scene the activity should start. Scenes

were selected randomly from a list of 8 scenes (living room,

kitchen, dining room, bedroom, kids bedroom, bathroom,

entrance hall, and home office). An example of a described

activity is shown in Fig. 3. Note that these descriptions may

likely omit the commonsense steps, as they were written by

“naive” workers that were describing these activities as they

would to a (human) friend.

In the second stage, we showed the collected descrip-

tions to the AMT workers and asked them to translate these

descriptions into programs using a graphical programing lan-

guage. We told them to produce a program that will “drive” a

robot to successfully accomplish the described activity. Our

interface builds on top of MIT’s Scratch project [1] designed

to teach young children to write symbolic code. We found

that workers were capable of quickly learning to produce

useful programs by providing them with a carefully designed

tutorial. Fig. 3 shows a snapshot of the programing interface.

Finally, we asked more qualified workers hired via Upwork

crowdsourcing platform to double check the collected data.

Workers had to compose a program by composing a se-

quence of steps. Each instruction is a Scratch block from a

predefined list of 77 possible blocks compiled by analyzing

the frequency of verbs in the collected descriptions. Each

step in the program is defined by a block. A block defines a

syntactic frame with an action and a list of arguments (e.g.,

the block walk requires one argument to specify the desti-

nation, Fig. 3.c). To simplify the search for blocks they are

organized according to 9 broad action categories (Fig. 3.b).

We required that the program contains all the steps, even

those not explicitly mentioned in the description, but that

could be inferred from common-sense. Fig. 3.d shows an

example of a program. We also allowed annotators to use

a “special” block for missing actions, where the step can be

written as free-form text. Programs using this special block

will not be used in the rest of the paper, but allowed us in

identifying new blocks that needed to be added.

More precisely, step t in the program can be written as:

stept = [actiont] 〈objectt,1〉(idt,1) ... 〈objectt,n〉(idt,n)

Here, id is an unique identifier (counter) of an object and

helps in disambiguating different instances of objects that

belong to the same class. An example of a program for

“watch tv” would be:

step
1
= [Walk] 〈TELEVISION〉(1)

step
2
= [SwitchOn] 〈TELEVISION〉(1)

step
3
= [Walk] 〈SOFA〉(1)

step
4
= [Sit] 〈SOFA〉(1)

step
5
= [Watch] 〈TELEVISION〉(1)

Here, the programs defines that the television in steps 1, 2

and 5 refer to the same object instance.

3.2. Dataset Analysis

In the first part we collected 1814 descriptions. From

those, we were able to collect programs for 1703 descrip-

tions. Some of the programs contained several “special

blocks” for missing actions, which we remove, resulting

in 1257 programs. We finally selected a set of tasks and

asked workers to write programs for them, obtaining 1564

additional programs. The resulting 2821 programs form our

ActivityPrograms dataset. On average, the collected descrip-

tions have 3.2 sentences and 21.9 words, and the resulting

programs have 11.6 steps on average. The dataset statistics

are summarized in Table 1.a.



Action name: 

Throw away newspaper

Description: 

Take the newspaper 

on the living room table 

and toss it.

a) b) c) d)

Figure 3: a) Description provided by a worker. b) User interface showing

the list of block categories and 4 example blocks, c) Example of composition

of a block by adding the arguments. Each block is like a Lego piece where

the user can drop arguments inside and attach one block to another. d) Final

program corresponding to the description from (a).
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Figure 4: a) Counts of actions in our ActivityPrograms

dataset, b) object counts (zoom to read)

The dataset covers 75 atomic actions and 308 objects,

making 2709 unique steps. Fig. 4.a shows a histogram of

the 50 most common actions appearing in the dataset, and,

Fig. 4.b, the 50 most common objects.

Our dataset contains activities with several examples, and

we analyze their diversity by comparing their programs. Ta-

ble 1.b analyzes 4 selected activities. We compute their

similarities as the average length of the longest common

subsequences computed between all pairs of programs.

We can also measure distances between activities by

measuring the distance between programs. The similarity

between two programs is measured as the length of their

longest common subsequence of instructions divided by the

length of the longest program. Table 1.c. shows the similar-

ity matrix (sorted to better show the block diagonal structure)

between different activities in our dataset.

Completeness of programs. We analyze whether the

collected programs contain all the necessary steps to execute

the given task. We sample 100 collected programs and ask

5 AMT workers to rate whether the program is complete,

missing minor steps (sitting in a chair before walking to-

wards it) or important steps (filling a glass before drinking).

Results show that 64% of the programs are complete, 28%

are missing minor steps and 8% are missing crucial steps.

4. VirtualHome: Simulator of Household Tasks

The main motivation behind using programs to represent

activities is to “drive” robots to perform tasks by having them

executing these programs. As a proxy, we here use programs

to drive characters in a simulated 3D environment. Simula-

tions are useful as they define a playground for “robots”, an

environment where artificial agents can be taught to perform

tasks. Here, we focus on building the simulator, and leave

learning inside the simulator to future work. In particular,

we will assume the agent has access to all 3D and semantic

information about the environment, as well as to manually

defined animations. Our focus will be to show that programs

represent a good way of instructing such agents. Further-

more, our simulator will allow us to generate a large-scale

video dataset of complex activities that is rich and diverse.

We can create such a dataset by simply recording the agent

executing programs in the simulator. The simulator then pro-

vides us with dense ground-truth information, eg semantic

segmentation, depth, pose, etc. Fig. 2 showcases this dataset.

We implemented our VirtualHome simulator using the

Unity3D game engine which allows us to exploit its kine-

matic, physics and navigation models, as well as user-

contributed 3D models available through Unity’s Assets

store. We obtained six furnished homes and 4 rigged hu-

manoid models from the web. On average, each home con-

tains 357 object instances (86 per room). We collected ob-

jects from additional 30 object classes that appear in our

collected programs yet are not available in the package, via

the 3D warehouse 1. To ensure visual diversity, we collected

at least 3 different models per class. The apartments and

agents are shown in Fig. 5 and Fig. 6.

4.1. Animating Programs in VirtualHome

Every step in the program requires us to animate the cor-

responding (inter)action in our virtual environment. We thus

need to both, determine which object in the home (which we

refer to as the game object) the step requires as well as prop-

erly animating the action. To get the former we need to solve

an optimization problem by taking into account all steps in

the program and finding a feasible path. For example, if the

program requires the agent to switch on a computer and type

on a keyboard, ideally the agent would type on the keyboard

next to the chosen computer and not navigate to another key-

board attached to a different computer in possibly a different

room. We now describe our simulator in more detail.

Animating atomic actions. There is a huge variety and

number of atomic actions that appear in the collected pro-

grams, as can be seen in Fig. 4. We implemented the 12 most

frequent ones: walk/run, grab, switch-on/off, open/close,

place, look-at, sit/standup, touch. Note that there is a large

variability in how an action is performed depending on to

which object it is applied to (e.g., opening a fridge is dif-

ferent than opening a drawer). We use Unity’s NavMesh

framework for navigation (path planner to avoid obstacles).

For each action we compute the agent’s target pose and

animate the action using RootMotion FinalIK inverse kine-

matics package. We further animate certain objects the agent

interacts with, e.g., we shake a coffee maker, animate toast

in a toaster, show a (random) photo on a computer or TV

1https://3dwarehouse.sketchup.com



Dataset # prog. avg # steps avg # sent. avg # words

ActivityProg. 2821 11.6 3.2 21.9

SyntheticProg. 5193 9.6 3.4 20.5

(a)

Action # Prog. LCS Norm. LCS

Make coffee 69 4.56 0.26

Fold laundry 11 1.29 0.08

Watch TV 128 3.65 0.40

Clean 42 0.76 0.04

(b)

(c)

Browse internet
Work

User computer
Check email

Pay bills
Study

Eat dinner
Set up table

Wash dishes with dishwasher
Wash dishes by hand

Wash dishes
Brush teeth
Wash face

Take shower
Take bath

Wash hands
Make bed
Take nap

Go to sleep
Sleep

Turn off light
Tuck kids in bed

Watch movie
Change TV channel

Watch TV

Table 1: (a) We analyze programs and natural language descriptions for both, real activities in ActivityPrograms (Sec. 3), and synthesized

programs (with real descr.). (b) ActivityPrograms: Analyzing diversity in the same activity, by computing similarities across all pairs of the

collected programs. “LCS" denotes longest common subsequence. For “norm.LCS", we normalize by max length of the two programs. (c)

shows the similarity matrix (sorted to better show the block diagonal structure) between different activities in our dataset.

Figure 5: 3D households in our VirtualHome. Notice the diversity in room and object layout

and appearance. Each home has on average 357 objects. First 4 scenes are used for training,

the fifth is also used in val, and all scenes are used when testing our video-to-script model.

male 1 female 1 male 2 female 2

Figure 6: Agents in VirtualHome. We use

male 1 and female 1 in train., and all agents

when testing our video-to-program model.

screen, light up a burner on a stove, and light up the lamps in

the room, when these objects are switched on by the agent.

Preparing the Scene. While every 3D home already con-

tains many objects, the programs may still mention objects

that are not present in the scene. To deal with this, we first

“set” the scene by placing all missing objects that a program

refers to in the home, before we try to execute the program.

To be able to prepare a scene in a plausible way, we collect a

knowledge base of possible object locations. The annotator

is shown the class name and selects a list of other objects

(including floor, wall) that are likely to support it.

Executing a Program. To animate a program we need

first to create a mapping between the objects in the program

and the corresponding instances inside the virtual simulator.

Furthermore, for each step in the program, we also need to

compute the interaction position of the agent with respect to

an object, and any additional information needed to animate

the action (e.g., which hand to use, speed). We build a tree

of all possibilities of assigning game objects to objects in the

program, along with all interaction positions and attributes.

To traverse the tree of possible states we use backtracking

and stop as soon as a state executing the last step is found.

Since the number of possible object mappings for each step is

small, and we can prune the number of interaction positions

to a few, our optimization runs in a few seconds, on average.

Animation. We place 6-9 static cameras in each room,

26 per home on average. During recording, we switch be-

tween cameras based on agent’s visibility. In particular, we

randomly select a camera which sees the agent, and keep it

until the agent is visible and within allowed distance. For

agent-object interaction we also try to select a camera and

adjust its field of view to enhance the visibility of the inter-

action. We further randomize the position, angle and field

of view of each camera. Randomization is important when

creating a dataset to ensure diversity of the final video data.

VirtualHome Activity dataset. Since the programs in

ActivityPrograms represent real activities that happen in

households, they contain significant variability in actions

and objects that appear in steps. While our ultimate aim is

to be able to animate all these actions in our simulator, our

current efforts only support the top 12 most frequent actions.

We thus create another dataset that contains programs con-

taining only these actions in their steps. The creation of this

dataset is explained below.

We synthesized 5,193 programs using a simple probabilis-

tic grammar, and had each one described in natural language

by a human annotator. Although these programs were not

given by annotators, they produced reasonable activities, cre-

ating a much larger dataset of paired descriptions-programs

at a fraction of the cost. We then animated each program

in our simulator, and automatically generated ground-truth

which allows us to train and evaluate our video models.

As can be seen from Table 1, descriptions in VirtualHome

Activity dataset are of comparable length. However, the

vocabulary here was biased towards that used in programs.

We animate the programs as described above, by random-

izing the selection of home, an agent, cameras, placement

of a subset of objects, initial location of the agent, speed

of the actions, and choice of objects for interactions. We

build on top of [2] to automatically generate groundtruth: 1)

time-stamp of each step to video, 2) agent’s 2D/3D pose, 3)

class and instance segmentation, 4) depth, 5) optical flow, 6)



camera parameters. Example of data is shown in Fig. 2.

5. From Videos and Descriptions to Programs

We introduce a novel task using our dataset. In particular,

we aim to generate a program for the activity from either a

natural language description or from a video demonstration.

We treat the task of transcribing an input (description or

video) into a program as a translation problem. We adapt the

seq2seq model [26] for our task, and train it with Reinforce-

ment Learning that exploits the reward from the simulator.

Our model consists of an RNN encoder that encodes

the input sequence into a hidden vector representation, and

another RNN acting as a decoder, generating one step of the

program at a time. We use LSTM with 100-dim hidden states

as our encoder. At each step t, our RNN decoder decodes a

step which takes the form of eq. (1). Let xt denote an input

vector to our RNN decoder at step t, and let ht be the hidden

state. Here, ht is computed as in the standard LSTM using

tanh as the non-linearity. Let ai be a one-hot encoding of an

action i, and oi a one-hot encoding of an object. We compute

the probability pti of an instruction i at step t as:

ãi = Waai, õi,n = Wooi,n, vi = mean(ãi, õi,1, ..., õi,n)

pti = softmaxi(
vi

‖vi‖

T

·Wv(h
t‖xatt

t )) (1)

where Wa and Wo and Wv are learnable matrices, and vi
denotes an embedding of an instruction. Note that here, n is

either 1 or 2 (our instructions have at most two objects).

The input vector xt concatenates multiple features. In par-

ticular, we use the embedding v of the step with the highest

probability from the previous time instance of the decoder.

Following [26], we further use the attention mechanism over

the encoder’s states to get another feature xatt
t . In particular:

αt
j = softmaxj(v

T
(

Watt (h
t‖hj

enc)
))

(2)

x
att
t =

∑

j

αt
jh

j
enc (3)

where Watt, v are learnable parameters. Our full model is

visualized in Fig. 7.

Learning and inference. Our goal is to generate pro-

grams that are both close to the ground-truth programs in

terms of their LCS (longest common subsequence) and are

also executable by our renderer. To that end, we train our

model in two phases. Firstly, we pre-train the model using

cross-entropy loss at each time step of the RNN decoder.

We follow the typical training strategy where we make a

prediction at each time instance but feed in the ground-truth

step to the next time instance. We use the word2vec [17]

embeddings for matrices Wa and Wo.

In the second stage, we treat program generation as an

Reinforcement Learning problem, where the agent is learn-

ing a policy that generates steps to compose a program.

We follow [20], and use policy gradient optimization to

train the model, using the greedy policy as the baseline es-

timator. We exploit two different kinds of reward r(ws, g)
for RL training, where ws denotes the sampled program,

and g the ground-truth program. To ensure that the gener-

ated program is semantically correct (follows the descrip-

tion/video), we use the normalized LCS metric (length of the

longest common subsequence) between the two programs

as our first reward rLCS(w
s, g). The second reward comes

from our simulator, and measures whether the generated

program is executable or not. This reward, rsim(ws), is a

simple binary value. We carefully balance the total reward

as, r(ws, g) = rLCS(w
s, g) + 0.1 · rsim(ws).

So far we did not specify the input to the RNN encoder.

Our model accepts either a language description or a video.

Textual Description. To encode a textual description our

RNN encoder gets as input the word2vec [17] embedding of

the word in the description at each time instance.

Video. To generate programs from videos, we partition

each video into 2-second clips and train a model to predict

the step at the middle frame. We use DilatedNet to obtain the

semantic segmentation of each frame and use the Temporal

Relation Network [31] with 4-frame relations to predict the

embedding of an instruction (action+object+object). We use

this embedding to obtain the likelihood of each instruction.

The prediction at each clip is used as input to the RNN

encoder for program generation.

6. Experiments

In our experiments we exploit both of our datasets: Activ-

ityPrograms containing descriptions and programs for real

activities, and VirtualHome Activity dataset that contains

synthesized programs, yet natural descriptions to describe

them. VirtualHome Activity dataset further contains videos

animating the programs.

6.1. Step (Instruction) Classification from Video

We first evaluate our model for the task of video-based

action and action-object-object (step/instruction in the pro-

gram) classification. Here, we partition each video in 2-sec

clips, and use the clip-based TRN to perform classification.

We compute performance as the mean per-class accuracy

across all 2-sec clips in test. To better understand the gen-

eralization properties of the video-based models, we further

divide the test set into videos recorded in homes seen at

train time, and videos in homes not seen at train time. We

report the results in Table 2 (left). To set the lower bound,

we also report a simple random retrieval baseline, in which

a step is randomly retrieved from the training set. We can

see that our model performs significantly better. However,

a large number of actions and objects of interest, makes the

prediction task challenging for the model.



Figure 7: Our encoder-decoder LSTM for generating programs from natural language descriptions or videos.

Action Objects Steps Mean

Rand. Retrieval 8.30% 1.50% 0.51% 3.43%

Seen homes 70.32 % 42.14 % 23.81 % 45.42%

Unseen homes 31.34% 14.55% 11.48% 19.12%

All 46.85% 25.76% 18.41% 30.34%

Action Objects Steps Mean Simulator

Rand. Retrieval .473 .079 .071 .207 100.0%

MLE .735 .359 .341 .478 19.4%

PG(LCS) .761 .383 .364 .502 19.0%

PG(LCS+Sim) .751 .377 .358 .495 22.4%

PG(LCS+Sim) Seen homes .851 .556 .528 .645 24.6%

PG(LCS+Sim) Unseen homes .680 .250 .236 .389 20.9%

Table 2: Left: Accuracy of video-based action classification and action-object-object (step or instruction in the program) prediction in

2-sec clips from our VirtualHome Activity dataset. Right: Video-based program generation.

Method Action Objects Steps Mean Simulator (%)

Rand. Sampling .226 .039 .020 .095 0.6%

Rand. Retrieval .473 .079 .071 .207 100.0%

Skipthoughts .642 .272 .252 .389 100.0%

MLE .777 .723 .686 .729 38.6%

PG(LCS) .803 .766 .732 .767 35.5%

PG(LCS+Sim) .806 .775 .740 .774 39.8%

Method Action Objects Steps Mean

Rand. Sampling .106 .018 .004 .043

Rand. Retrieval .320 .037 .032 .130

Skipthoughts .469 .297 .266 .344

MLE .497 .392 .340 .410

PG(LCS) .522 .433 .387 .447

Table 3: Programs from descr.: Accuracy on (left) VirtualHome Act., and (right) ActivityPrograms. We compute the length of longest

common subsequence between a predicted script and GT and divide by max length of the two programs, mimicking IoU for programs. Since

real programs are mainly not executable in our simulator due to the lack of implemented actions, we cannot report the executability metric.

6.2. Program Generation

We now evaluate the task of program generation.

Metrics. We evaluate program induction using a measure

similar to IOU. We compute the longest common subse-

quence between a GT and a predicted program, where we

allow gaps between the matching steps, but require their

order to be correct. We obtain accuracy as the length of the

subseq. divided by the max of the two programs’ lengths.

We also compute accuracies for actions and objects alone.

Since LCS does not measure whether the program is valid,

we report another metrics that computes the percentage of

generated programs that are executable in our simulator.

Language-based prediction. Since we have descrip-

tions for all activities, we first evaluate how well our model

translates natural language descriptions into programs. We

report results on ActivityPrograms (real activities), as well

as on VirtualHome Activity datasets (where we first only

consider descriptions, not videos). We compare our models

to four baselines: 1) random sampling, where we randomly

pick both an action for each step and its arguments, 2) ran-

dom retrieval, where we randomly pick a program from

the training set, 3) skipthoughts, where we embed the de-

scription using [10, 32], retrieve the closest description from

training set and take its program, 4) our model trained with

MLE (no RL). Table 3 provides the results. We can see that

our model outperforms all baselines on both datasets. Our

RL model that exploits LCS reward outperforms the MLE

model on both metrics (LCS and executability). Our model

that uses both rewards slightly decreases the LCS score, but

significantly improves the executability metrics.

Video-based prediction. We also report results on the

most challenging task of video-based program generation.

The results are shown in Table 2 (right). One can observe

that RL training with LCS reward improves the overall ac-

curacy over the MLE model (the generated programs are

more meaningful given the description/video), however its

executability score decreases. This is expected: MLE model

typically generates shorter programs, which are thus more

likely to be executable (an empty program is always exe-

cutable). A careful balance of both metrics is necessary. RL

with both the LCS and the simulator reward improves both

LCS and the executability metrics over the LCS-only model.

Executing programs in VirtualHome. In Fig. 8 we

show a few examples of our agent executing programs gen-

erated from natural descriptions. To understand the quality

of our simulator as well as the plausibility of our program

evaluation metrics, we perform a human study. We randomly

selected 10 examples per level of performance: (a) [0.95−1],
(b) [0.8 − 0.95], (c) [0.65 − 0.8], and (d) [0.5 − 0.65]. For

each example we had 5 AMT workers judge the quality of

the performed activity in our simulator, given its language

description. Results are shown in Fig. 9. One can notice



[Walk] [Grab] 〈CUP〉 [Open] 〈FRIDGE〉 [Grab] 〈MILK〉

Description: Get an empty glass. Take milk from refrigerator and open it. Pour milk into glass.

[SwitchOn] 〈TV〉 [Sit] 〈SOFA〉 [SwitchOff] 〈TV〉 [Put] 〈COFF.-POT〉 〈TABLE〉

Description: Go watch TV on the couch. Turn the TV off and grab the coffee pot. Put the coffee pot on the table and go turn the light on.

[Walk] [Grab] 〈MAGAZINE〉 [Sit] 〈TOILET〉 [Walk] [Put] 〈MAGAZINE〉 〈DESK〉

Description: Look at the clock then get the magazine and use the toilet. When done put the magazine on the table.

[Walk] [Grab] 〈FACE SOAP〉 [Put] 〈F.SOAP〉 〈COUNTER〉 [SwitchOn] 〈TOASTER〉 [Put] 〈POT〉 〈STOVE〉

Description: Take the face soap to the kitchen counter and place it there. Turn toaster on and then switch it off. Place the pot on the stove.

Figure 8: Our agent executing generated programs from descriptions, in our VirtualHome. Top description is from ActivityPrograms, while

the rest are from VirtualHome Activity dataset. Notice that the top agent uses his left to open the fridge and to grab an object since he already

holds an item in his right. There are also some limitations, for example, in row 3 the agent sits on the toilet fully clothed. Furthermore,

sometimes the carried item slightly penetrates into the character’s body due to imprecisions of the colliders.

[0.95-1.00] [0.80-0.95] [0.65-0.80] [0.50-0.65]
0

0.1
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0.8
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Marginal
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Good
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Figure 9: Human evaluation of our agent executing described ac-

tivities via program generation from text: x axis shows the program

prediction accuracy, y axis is the human score.

agreement between our metrics and human scores. Gener-

ally, at perfect performance the simulations got high human

scores, however, there are examples where this was not the

case. This may be due to imperfect animation, an indication

that further improvements to our simulator are possible.

Implications. The high performance of text-based ac-

tivity animation opens exciting possibilities for the future.

It would allow us to replace the more rigid program syn-

thesis that we used to create our dataset, by having annota-

tors create these animations directly via natural language or

crowd-sourcing scripts from existing text corpora.

7. Conclusion

We collected a large knowledge base of how-to for house-

hold activities specifically aimed for robots. Our dataset

contains natural language descriptions of activities as well as

programs, a formal symbolic representation of activities in

the form of a sequence of steps. What makes these programs

unique is that they contain all the steps necessary to per-

form an activity. We further introduced VirtualHome, a 3D

simulator of household activities, which we used to create

a large video activity dataset with rich ground-truth. We

proposed a simple model that infers a program from either a

video or a textual description, allowing robots to be “driven”

by naive users via natural language or video demonstration.

We showed examples of agents performing these programs

in our simulator. There are many exciting avenues going

forward, for example, training agents to perform tasks from

visual observation alone using RL techniques.
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